Moment Estimation in a Semiparametric Generalized Linear Model
نویسندگان
چکیده
In this article, we propose to estimate the regression parameters in a semiparametric generalized linear model by moment estimating equations. These estimators are shown to be consistent and asymptotically normal. We present two estimators of the nonparametric part, provide conditions for the existence and uniform consistency, and obtain faster rates of convergence under weaker assumptions.
منابع مشابه
Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration ...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملDEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Moment Restriction-based Econometric Methods: An Overview
Moment restriction-based econometric modelling is a broad class which includes the parametric, semiparametric and nonparametric approaches. Moments and conditional moments themselves are nonparametric quantities. If a model is specified in part up to some finite dimensional parameters, this will provide semiparametric estimates or tests. If we use the score to construct moment restrictions to e...
متن کاملEfficient Estimation in Marginal Partially Linear Models for Longitudinal/Clustered Data Using Splines
We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and nonparametric part of the model have properties parallel to those of par...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کامل